
October 10, 2006 / Vol. 4, No. 10 / CHINESE OPTICS LETTERS 595

Linear scheme for time-domain fluorescence
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Based on the generalized pulse spectrum technique that was previously developed for time-domain diffuse
optical tomography, we propose a linear framework of time-domain fluorescence molecular tomography
for simultaneous reconstruction of both the yield and lifetime of multi-fluorophores. The methodology is
exemplified for mono-component case and validated with simulated data.
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With the maturity of near infrared (NIR) fluorescence
diffuse optical tomography (DOT)[1] and advances
in molecule-specific red-shifted and NIR fluorescent
probes[2], fluorescence molecular tomography (FMT) is
evolving as a novel optical imaging modality for visual-
ization and quantification of the gene function and ex-
pression deep inside intact living subjects[3,4]. FMT has
been successfully demonstrated in continuous-wave[5] and
frequency-domain modes[6]. Its extension to time-domain
(TD) mode is imminent[7,8], where not only the simulta-
neous recovery of fluorescent yield and lifetime but also
the analysis of multiple components could be achieved
in a direct way. The two-parameter reconstruction pro-
vides information concerning not only the localization
but also the local environment (oxygen, [Ca2+], pH value)
of fluorophores, while the multi-component analysis en-
ables assessment of multi-gene controlling mechanism in
a disease progression. As with the TD-DOT, TD-FMT
can also be performed using either the full time-resolved
scheme[9] or the featured-data one[10], with the former
better quantifying the reconstruction but at the large
computation cost as well as high noise-sensitivity, while
the latter being fast and robust but with degraded quan-
tification because of the information loss[9]. By extend-
ing the generalized pulse spectrum technique (GPST),
which is a featured-data scheme previously developed for
TD-DOT, we propose a linear TD-FMT algorithm for si-
multaneously reconstructing both the yield and lifetime
distributions of multiple fluorescent components. The
methodology is exemplified for one-component case and
validated with simulated data.

The image reconstruction in FMT is expressed as an
inverse issue for a given photon-migration model, which
prevalently employs the photon diffusion equation[10]. In
complex domain, the coupled diffusion equations that
govern the relationship between the excitation and emis-
sion propagations in turbid medium as excited by an ideal
ultra-short point source are given as⎧⎪⎨

⎪⎩
[∇ · Dx (r)∇− μax (r) c − p] Φx (r, p)
= −δ (r− rs)
[∇ · Dm (r)∇− μam (r) c − p] Φm (r, p)
= −Φx (r, p)

∑Nc

n ημafn (r)/[1 + pτn (r)]

, (1)

where subscripts x and m denote the excitation and
emission wavelengths, respectively; Φv (r, p) (v ∈ [x, m])

is the Laplace transform of the TD photon density
Φv (r, t); the optical parameters involved are absorption
coefficient μav (r), reduced scattering coefficient μ′

sv (r),
and diffusion coefficient Dv (r, t) = c/[3μ′

sv (r)]; the
fluorescent parameters are yield ημafn (r) and lifetime
τn (r) with n indexing the Nc fluorophores. We employ
uniquely the Robin boundary condition (RBC) for the
above coupled equations[10],

Φv (r, p) +
2(1 − Rf)
1 + Rf

D (r)n · ∇Φv (r, p)
∣∣∣∣
r∈∂Ω

= 0, (2)

where Rf ≈ 0.53 is the internal reflection coefficient at
the air-tissue boundary. The measurable flux, i.e., the
data-type, at the boundary site ξd (d = 1, 2, · · · , D) and
for the source site ζs (s = 1, 2, · · · , S), is calculated by
Fick’s law with exploiting the RBC.

Γv (ξd, ζs, p) =
1 + Rf

2(1 − Rf)
cΦv (ξd, ζs, p) . (3)

Equation (1) can be efficiently solved using the
Galerkin finite-element-method (FEM) by expand-
ing Φv (r, t) into finite elements: Φv (r, p) ≈
Φv (p)T u (r) with u (r) = [u1 (r) , u2 (r) , · · · , uN (r)]T

and Φv (p) = [Φv (1, p) , Φv (2, p) , · · · , Φv (N, p)]T de-
noting the shape function and Laplace-transformed pho-
ton density at the N nodes of the FEM mesh, resulting
in the following matrix equation

(Av + B)Φv (p) = Qv, (4)

where Av and B are of the same expression for the ex-
citation and emission[10], but Qv differs in form for the
excitation and emission as

Qv (i, t) =

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

ui (r) δ (r− rs) dΩ = ui (rs)
for v = x∑N

j=1 C (i, j)Φx (j, p)
∑Nc

n
ημafn(j)
1+pτn(j)

for v = m

, (5)

where i and j index the N nodes of the mesh; ημafn (j)
and τn (j) the yield and lifetime of the nth fluorophore
at the jth meshing node, respectively.

According to Eq. (1) and considering the Fick’s Law at
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the emission wavelength, we obtain an integral equation
as⎧⎨

⎩
Γm (ξd, ζs, p)

=
∫
Ω Gm (ξd, r, p)Φx (r, ζs, p)x (r, p) dΩ

x (r, p) =
∑Nc

n ημafi (r)/[1 + pτn (r)]
, (6)

where Γm (ξd, ζs, p) is Laplace transform of the mea-
sured TD flux for a source-detector combination and
Gm (r, r′, p) the Green’s function (flux) of the diffusion
equation at the emission wavelength. Let Γ (p) =
[Γm (ξ1, ζ1, p) , Γm (ξ2, ζ1, p) , · · · , Γm (ξD, ζS , p)]T,
and x (r, p) ≈ xT(p)u (r) with x (p) =
[x1 (p) , x2 (p) , . . . , xN (p)]T, Eq. (6) can be discretized
into a matrix equation

Γ (p) = W (p)x (p) , (7)

with the entries of the weighting matrix W (p) given by

Wds (ξd, ζs, p, n)

=
∑
Ωn

Ḡ(Ωn)
m (ξd, p) Φ̄(Ωn)

x (ζs, p)
∫

Ωn

un (r) dΩ, (8)

where Ωn numerates all the elements that are joined at
the nth node; Ḡ

(Ωn)
m (ξd, p) and Φ̄(Ωn)

x (ζs, p) are the mean
values of Gm (ξd, r, p) and Φx (r, ζs, p) over the nodes of
the element Ωn, respectively. For solving Eq. (7) that is
usually of large scale and ill-posed, the algebraic recon-
struction technique (ART) might be very efficient, where
the initial point x0 (p) is set homogeneous to those for the
background. In principle, the ART sequentially projects
a solution estimate onto the hyperplanes defined by the
individual rows of Eq. (7). The relaxation factor λ, which
has a significant influence on the results, has been proven
in a range of [0, 2] to make the algorithm converge to a
point on the intersection of the governing equations that
is nearest to the initial point. The regularization strategy
in an ART-based algorithm is accomplished by limiting
the number of iterations, whose choice is task-dependent
and mandatory in presence of noise. The primary advan-
tage of this implicit linear method over other solutions to
a linear system, such as the Levenberg-Marquardt (LM),
the truncated singular-value-decomposition (SVD), and
conjugate-gradient (CG) algorithms, is its near indepen-
dence of memory occupation since only one row in the
weight matrix is needed at one time.

In principle, the yield and lifetime images of multiple
components can be found from x (r, p) using at least 2Nc

working frequency pairs in the Laplace transforms. As
an example, the yield ημaf (r) and lifetime τ (r) in one-
component case can be simply recovered from the images
of x (r, p1) and x (r, p2), for a pair of the real-domain
working frequencies, saying p1 and p2,{

ημaf (r) = (p1−p2)x(r,p1)x(r,p2)
p1x(r,p1)−p2x(r,p2)

τ (r) = − x(r,p1)−x(r,p2)
p1x(r,p1)−p2x(r,p2)

. (9)

For computational simplicity, the validation of the
methodology is performed on a two-dimensional (2D) cir-
cular domain with a diameter of R = 25 mm, using sim-
ulated data with Gaussian additive noise, i.e.,

Γm (ξd, ζs, p) = Γ̂m (ξd, ζs, p)
(
1 + 10−χ/20RN

)
, (10)

where Γ̂m (ξd, ζs, p) stands for the calculated (noiseless)
data-type from Eq. (1), χ the signal-to-noise ratio (SNR)
in decibels, and RN the standard normal distributed ran-
dom number. Nevertheless, the principle of the method-
ology is applicable to three-dimensional (3D) models of
the realistic geometry. For applying FEM, the domain is
divided into 3750 triangles that join at 1951 nodes. Six-
teen optodes with coaxial source-detector structure are
assumed around the annulus at equal spacing, of which
the 16 detectors collect the exiting photons in parallel
while the 16 sources illuminate the surface successively.
Of the total 256 TD measurements, only 9 measure-
ments from the detectors opposite to the illuminating
source (transmission mode), i.e., a set of 144 TD data,
are employed in the reconstruction to effectively reduce
the difference in the order of the data magnitude and
therefore to significantly improve the image quality[9].
Figure 1 shows the FEM mesh and the source-detector
deployment.

To simulate complex situations that are probably
encountered in practice, 4 circular fluorescent targets
with the unique diameter of r = 4 mm but different
fluorescent properties are embedded in the 2D domain.
The optical properties of the targets in both the cases are
the same as those of the background, that are chosen in
the range of the optical properties for in vivo muscle, i.e.,
μax,m = 0.035 mm−1 and μ′

sx,m = 1.0 mm−1 at both the
excitation and emission wavelengths. Table 1 lists the
geometric parameters, optical and fluorescent properties
of the phantom.

Firstly, the image reconstruction is performed
for a variety of SNRs, with a fixed working fre-
quency pair of p1,2 = ∓0.25P , where P =

1/
[
1/μ

(B)
ax c + 1/μ

(B)
am c + τ (B)

]
, aiming at evaluating the

ability of the algorithm to distinguish the difference in
both fluorescent yield and lifetime of the targets and its

Fig. 1. FEM mesh and optode deployment employed in the
study.

Table 1. Optical, Fluorescent and Geometrical
Parameters of Case 1

Region Diameter μax,m μ′
sx,m ημaf τ

(mm) (mm−1) (mm−1) (mm−1) (ps)

Background 25 0.035 1.0 0.001 100

Target 1 4 0.035 1.0 0.0015 500

Target 2 4 0.035 1.0 0.0025 300

Target 3 4 0.035 1.0 0.003 400

Target 4 4 0.035 1.0 0.002 600
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Fig. 2. Reconstructed fluorescent yield and lifetime images
of the numerical phantom with noisy data at different SNRs
of 30 (b), 40 (c), and 50 dB (d) for a working frequency pair
∓0.25P , together with the original images (a) for comparison.

Fig. 3. Reconstruction of the numerical phantom using noisy
data at a fixed SNR of 40 dB for different working frequency
pairs: ∓0.05P (a), ∓0.1P (b), ∓0.25P (c), and ∓0.5P (d).

noise-robustness. Figure 2 shows the original and recon-
structed images at different SNRs of 30, 40, and 50 dB,
where all the differences among the targets in both the
yield and lifetime are fairly disclosed at a moderate SNR

higher than 40 dB. Further improvements in spatial res-
olution and quantitative accuracy are desired in future
work. Secondly, we investigate the influence of choice of
working frequencies on the image quality by reconstruct-
ing the images using a variety of working frequency pairs:
p1,2 = ∓0.05P , ∓0.1P , ∓0.25P , ∓0.5P , and ∓0.75P , re-
spectively, at a fixed SNR of 40 dB, as shown in Fig.
3. It is observed that, with the difference between the
paired frequencies enlarged, the image quality, especially
for the lifetime image, is significantly improved. An op-
timal image quality can be attained approximately at
p1,2 = ∓0.5P , after which the image quality again in-
creasingly degrades (the images not shown here). It is
therefore concluded that to obtain a maximum fidelity
of reconstruction in presence of noise, an optimized fre-
quency pair might be practically crucial to the detection
of the faint fluorescent light.

In summary, we have presented a linear GPST method-
ology of TD-FMT for simultaneous reconstruction of the
fluorescent yield and lifetime of multiple components,
from which the algorithm for one-component recovery
was exemplified. The simulative validations of the al-
gorithm for a 2D domain have been performed for its
capability of discerning the difference in the fluorescent
properties and noise-robustness. The resultant images
have fairly demonstrated the effectiveness of the pro-
posed methodology. In addition, we have investigated
the influence of the paired working frequencies on the
reconstruction and concluded that an optimal choice of
the working frequency pair can greatly enhance the noise-
robustness of the algorithm. In the on-going work, the
phantom and in vivo experimental validations of the
methodology will be explored.
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